Decavanadate is responsible for vanadate-induced two-dimensional crystals in sarcoplasmic reticulum

Abstract
Two-dimensional protein crystals of the calcium pump protein of sarcoplasmic reticulum (SR) from fast skeletal muscle were induced using Na3VO3 as first described by Dux and Martonosi. These crystals exhibit repeat rows ∼11 nm apart which contain discrete units with ∼7 nm repeats. Four different methods of sample preparation for electron microscopy, i.e., negative staining, freezedrying, freeze-fracturing, and thin-sectioning electron microscopy, each give complimentary repeat units. The SR-membrane crystals exhibit surface structure by the freeze-drying technique and row-like structures on the normally smooth outer face of normal SR. The formation of the membrane crystals is dependent on the pH and concentration of the vanadate. Only conditions favoring the presence of decavanadate yield crystals. At low concentrations and neutral pH, decavanadate is unstable and with time converts to smaller oligomers and the monomer. The presence of membrane crystals was correlated with the life span of the decavanadate. Membrane crystals were obtained in the SR membrane from fast twitch muscle from light and heavy SR, referable to longitudinal and terminal cisternae as well as from reconstituted SR. Canine cardiac SR did not crystallize under these conditions.

This publication has 50 references indexed in Scilit: