THE FLOW OF MICROEMULSIONS THROUGH PACKED BEDS AND CAPILLARY TUBES

Abstract
The flow behavior of water-in-oil microemulsions through beds packed with glass spheres was studied experimentally. The microemulsions used in this study exhibited a shear thinning viscosity described by a simple power law model. The now of the microemulsions was accompanied by significant apparent slip effects, quantified by an effective slip velocity. The effective slip velocity increased with increasing surfactant concentration, but it differed in magnitude for the packed bed and the capillary tube flows. In the absence of apparent slip effects, the capillary-power law (CPL) model predicted the superficial velocities in the packed beds with an average error of less than 6%. This provides a direct verification of the applicability of the capillary-power law model to inelastic shear thinning fluids in the absence of "anomalous" wall effects.