Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid

Abstract
A series of reduced-charge montmorillonites (RCM), prepared from the same parent Li-montmorillonite (Jelšový Potok, Slovakia) by heating at various temperatures (105–210°C) for 24 h, was treated with 6 m HCl at 95°C for periods up to 30 h. Reaction solutions obtained were analysed for Al, Fe, Mg and Li and the solid reaction products were investigated by FTIR spectroscopy. Both analyses provided evidence that the extent of dissolution decreased with increased amounts of Li fixed within the montmorillonite structure, i.e. with increased heating temperature. Differences in the acid dissolution process were reflected in the structural changes which occurred within the RCM samples, due presumably to different positions of fixed Li. The ethylene glycol monoethyl ether (EGME) surface areas, and XRD and HRTEM analyses of the RCM series revealed an increased amount of non-swelling layers in the samples prepared at higher temperatures, which caused a substantially slower decomposition of M7 and M8 in HCl. The calculated XRD patterns of M6 and M7 confirmed the presence of 20% and 45% pyrophyllite-like layers, respectively, in these samples. Mixed-layer pyrophyllite-like-smectite and pyrophyllite-like crystals, containing only non-swelling layers, were found in sample M8. The results confirmed that the amount of swelling layers in RCM significantly affects their dissolution rate in HCl.