STRONG COUPLING QED BREAKS CHIRAL SYMMETRY

Abstract
We show that the strong coupling limit of d-dimensional quantum electrodynamics with 2d/2[d/2] flavors of fermions can be mapped onto the s=1/2 quantum Heisenberg antiferromagnet in d–1 space dimensions. We use this mapping to prove that the strong coupling limit of QED breaks chiral symmetry. The staggered Néel order parameter of the antiferromagnet is the expectation value of a mass operator in QED and the spin-waves are pions. We speculate that the chiral symmetry breaking phase transition corresponds to a transition between the flux phase and the conventional Néel ordered phase of an antiferromagnetic t-J model.
All Related Versions

This publication has 0 references indexed in Scilit: