Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene.
Open Access
- 1 January 1994
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 14 (1) , 407-415
- https://doi.org/10.1128/mcb.14.1.407
Abstract
We have identified a new Saccharomyces cerevisiae gene, MLH1 (mutL homolog), that encodes a predicted protein product with sequence similarity to DNA mismatch repair proteins of bacteria (MutL and HexB) and S. cerevisiae yeast (PMS1). Disruption of the MLH1 gene results in elevated spontaneous mutation rates during vegetative growth as measured by forward mutation to canavanine resistance and reversion of the hom3-10 allele. Additionally, the mlh1 delta mutant displays a dramatic increase in the instability of simple sequence repeats, i.e., (GT)n (M. Strand, T. A. Prolla, R. M. Liskay, and T. D. Petes, Nature [London] 365:274-276, 1993). Meiotic studies indicate that disruption of the MLH1 gene in diploid strains causes increased spore lethality, presumably due to the accumulation of recessive lethal mutations, and increased postmeiotic segregation at each of four loci, the latter being indicative of inefficient repair of heteroduplex DNA generated during genetic recombination. mlh1 delta mutants, which should represent the null phenotype, show the same mutator and meiotic phenotypes as isogenic pms1 delta mutants. Interestingly, mutator and meiotic phenotypes of the mlh1 delta pms1 delta double mutant are indistinguishable from those of the mlh1 delta and pms1 delta single mutants. On the basis of our data, we suggest that in contrast to Escherichia coli, there are two MutL/HexB-like proteins in S. cerevisiae and that each is a required component of the same DNA mismatch repair pathway.Keywords
This publication has 48 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- Clues to the Pathogenesis of Familial Colorectal CancerScience, 1993
- Molecular MatchmakersScience, 1993
- Mechanisms of DNA-mismatch correctionMutation Research/DNA Repair, 1990
- DNA Mismatch Correction in a Defined SystemScience, 1989
- Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA PolymeraseScience, 1988
- The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiaeNature, 1987
- Nuclear location signals in polyoma virus large-TCell, 1985
- The double-strand-break repair model for recombinationPublished by Elsevier ,1983
- [12] One-step gene disruption in yeastPublished by Elsevier ,1983