Test of the Boundary-Condition Constraint Method for Nuclear Reactions
- 11 October 1965
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 140 (1B) , B63-B68
- https://doi.org/10.1103/physrev.140.b63
Abstract
The boundary-condition constraint method (BCCM) is a generalization of -matrix theory that permits the shell model to be used as a basis for nuclear-reaction calculations and which permits the correct farasymptotic behavior of the wave function to be imposed as a constraint on shell-model bound-state calculations. For practical application it is necessary to truncate sums over an infinite number of levels. The purpose of this paper is to investigate how effective the few-level approximation might be. The BCCM is used to calculate an -wave bound state for a square well in the two- and three-level approximations. The BCCM results are found to compare favorably with the exact and shell-model results. The BCCM is used to calculate the and -wave scattering from a square well in the two- and three-level approximations. The results are found to compare favorably with the exact and Wigner -matrix-theory results. We note that within the -level approximation there is some ambiguity in the form of the Green's function to be used with the BCCM.
Keywords
This publication has 9 references indexed in Scilit:
- Boundary-Condition Constraints for the Shell Model: A Method for Nuclear Structure and Nuclear ReactionsPhysical Review B, 1965
- Nuclear Reactions and Level WidthsAmerican Journal of Physics, 1949
- Expansions in terms of sets of functions with complex eigenvaluesMathematical Proceedings of the Cambridge Philosophical Society, 1948
- Higher Angular Momenta and Long Range Interaction in Resonance ReactionsPhysical Review B, 1947
- Resonance ReactionsPhysical Review B, 1946
- Resonance Reactions and Anomalous ScatteringPhysical Review B, 1946
- Schematic Treatment of Nuclear ResonancesPhysical Review B, 1946
- The Interpretation of Resonances in Nuclear ReactionsPhysical Review B, 1940
- The dispersion formula for nuclear reactionsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938