Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability

Abstract
A self-transmissible (Tra+) plasmid encoding determinants for restriction and modification activities (R+/M+) from Streptococcus lactis ME2 was isolated and characterized. The 28-kilobase (kb) plasmid (pTN20) was detected in lactose-fermenting (Lac+) transconjugants generated from matings between S. lactis N1, and ME2 variant, and a plasmid-free recipient, S. lactis LM2301. The plaquing efficiencies of prolate- and small isometric-headed phages were reduced on transconjugants containing either pTN20 (R+/M+ Tra+) or 100-kb plasmids encoding Lac+, R+/M+, and Tra+. Lac+ transconjugants which harbored pTR1040 (Lac+) and pTN20 (R+/M+) were phenotypically R-/M- and transferred Lac+ at low frequency in subsequent matings to give rise to 100-kb R+/M+ plasmids. R+/M+ activities and high-frequency conjugal transfer ability were detected in Lac+ transconjugants that contained pTR1041 (Lac+) and pTN20 (R+/M+). No 100-kb R+/M+ plasmids were recovered after these matings, suggesting that pTR1041 was mobilized by pTN20 through a process that resembled plasmid donation. pTR1041 was identical to pTR1040 but contained an additional 3.3-kb DNA fragment. These data suggested that phenotypic expression of R+/M+ and Tra+ is affected by coresident Lac+ plasmids. Restriction enzyme analysis and hybridization reactions demonstrated that the 100-kb R+/M+ plasmid was formed by a cointegration event between pTR1040 (Lac+) and pTN20 (R+/M+ Tra+) during conjugal transfer via a conductive-type process. This is the first report that defines self-transmissible restriction and modification plasmids in the lactic streptococci.