Pore-like structures in biological membranes

Abstract
In freeze-fracture replicas, biological membranes appear as smooth surfaces interrupted by random globular protrusions, the intramembrane particles. Smooth areas correspond to the membrane phospholipidic domain, while intramembrane particles are the morphological counterpart of membrane proteins. In the present work, examination of membranes in a variety of cell types reveals that a number of intramembrane particles contain an electron-dense spot. The spot is thought to correspond to a minute pit in the particle, filled by the platinum used in the freeze-fracture procedure. Similar images, described previously in intramembrane particles forming the specific array of the gap junction, were interpreted as hydrophilic channels bridging the interior and the exterior of the plasma membrane. Comparison between the gap junction particles and the non-junctional particles containing a dense spot suggests that these latter may too contain hydrophilic channels. The channels in random intramembrane particles would represent the morphological counterparts of the water-filled pores described in models of membrane permeability.

This publication has 13 references indexed in Scilit: