Some statistical properties of small scale turbulence in an atmospheric boundary layer

Abstract
Derivatives of velocity signals obtained in a turbulent boundary layer are examined for correspondence to the lognormal distribution. It is found that there is rough agreement but that unlikely events at high values are much less common in the observed fields than would be inferred from the lognormal distribution. The actual distributions correspond more to those obtained from a random walk with a limited number of steps, so the difference between these distributions and the lognormal may be related to the fact that the Reynolds number is finite.The third-order structure function is examined, and found to be roughly consistent with the existence of an inertial subrange of a Kolmogoroff equilibrium reacute;gime over a range of scale which is a priori reasonable but which is far less extensive than the $-\frac{5}{3}$ region of the spectrum.

This publication has 4 references indexed in Scilit: