Cognitive Strategy-Specific Increases in Phosphorylated cAMP Response Element-Binding Protein and c-Fos in the Hippocampus and Dorsal Striatum

Abstract
Extensive research has shown that the hippocampus and striatum have dissociable roles in memory and are necessary for “place” and “response” learning, respectively. In the present study, rats were trained on a cross maze task that could be solved by either a place or a response strategy, and the strategy used was determined by a probe trial. Phosphorylated cAMP response element-binding protein (pCREB) and c-Fos immunoreactivity (IR) were measured in the hippocampus and striatum either immediately or 1 hr after cross maze training. Immediately after training, pCREB-IR and c-Fos-IR were significantly higher in the hippocampus and striatum of trained rats than in control rats matched for motor activity, but the increase was independent of the strategy revealed at probe. One hour after training, however, pCREB-IR and c-Fos-IR were sustained in the hippocampal pyramidal and granule cell layers of place learners but returned to basal levels among response learners. In addition, pCREB-IR was sustained in the dorsomedial and dorsolateral striatum of response learners but returned to basal levels among place learners. There were no differences between place and response learners in c-Fos-IR in the striatum at either time point. The present results indicate that cross maze training causes an initial activation of transcription factors in both the hippocampus and striatum. Formation of memory for a place strategy, however, is related to sustained phosphorylation of CREB and expression of c-Fos for at least 1 hr in the hippocampus, whereas formation of memory for a response strategy is related to phosphorylation of CREB in the striatum.

This publication has 52 references indexed in Scilit: