Abstract
We construct D-optimal designs for the Michaelis-Menten model when the variance of the response depends on the independent variable. However, this dependence is only partially known. A Bayesian approacn is used to find an optimal design by incorporating the prior lnformation about the variance structure. We demonstrate the method for a class of error variance structures and present efficiencies of these optimal designs under prior mis-specifications. In particular, we show that an erroneous assumption on the variance structure for the Michaelis-Menten model can have serious consequences.