Statistical mechanics of shell models for two-dimensional turbulence

Abstract
We study shell models that conserve the analogs of energy and enstrophy and hence are designed to mimic fluid turbulence in two-dimensions (2D). The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager [Nuovo Cimento Suppl. 6, 279 (1949)], Hopf [J. Rat. Mech. Anal. 1, 87 (1952)], and Lee [Q. Appl. Math. 10, 69 (1952)]. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (‘‘shell temperatures’’) changing slowly with scale. This is clear evidence that the simplest shell models are not adequate to reproduce the main features of two-dimensional turbulence. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy and from one branch of the formal statistical equilibrium coincide in these shell models in contrast to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence has previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy. We also study the dynamical properties of the models and the growth of perturbations.
All Related Versions