Maximally entangled mixed states of two qubits
Preprint
- 31 January 2002
Abstract
We consider mixed states of two qubits and show under which global unitary operations their entanglement is maximized. This leads to a class of states that is a generalization of the Bell states. Three measures of entanglement are considered: entanglement of formation, negativity and relative entropy of entanglement. Surprisingly all states that maximize one measure also maximize the others. We will give a complete characterization of these generalized Bell states and prove that these states for fixed eigenvalues are all equivalent under local unitary transformations. We will furthermore characterize all nearly entangled states closest to the maximally mixed state and derive a new lower bound on the volume of separable mixed states.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: