Abstract
We consider a Cauchy problem for the heat equation in the quarter plane, where data are given at x = 1 and a solution is sought in the interval 0 < x < 1. This inverse heat conduction problem is a model of a situation where one wants to determine the surface temperature given measurements inside a heat-conducting body. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. In an earlier paper we showed that replacement of the time derivative by a difference stabilizes the problem. In this paper we investigate the use of time differencing combined with a “method of lines” for solving numerically the initial value problem in the space variable. We discuss the numerical stability of this procedure, and we show that, in most cases, a usual explicit (e.g., Runge-Kutta) method can be used efficiently and stably. Numerical examples are given. The approach of this paper is proposed as an alternative way of implementing space-marching methods for the sideways heat equation.