Abstract
The virtual waiting time process, W(t), in the M/G/1 queue is investigated under the condition that the initial busy period terminates but has not done so by time n ≥ t. It is demonstrated that, as n → ∞, W(t), suitably scaled and normed, converges to the unsigned Brownian excursion process or a modification of that process depending whether ρ ≠ 1 or ρ = 1, where ρ is the traffic intensity.

This publication has 1 reference indexed in Scilit: