Abstract
The position of the region of transition to turbulence and the manner in which turbulence develops are investigated using a hot-wire anemometer to study the character of the flow in the wake of a circular cylinder. In the range of Reynolds numbers greater than 200 in which turbulent motion is developed, the region of transition to turbulence moves towards the cylinder with increasing Reynolds number. The manner of transition to turbulence appears to undergo a basic change as the region of transition moves from the periodic wake into the region of flow immediately behind the cylinder where the separated layers have not rolled into vortices, that is, as the Reynolds number increases from Roshko's transition range to his irregular range. When transition occurs in the periodic wake it is a result of distortion due to large-scale three-dimensional effects. Turbulence, when it develops in the separated layers, is preceded by two-dimensional Tollmien-Schlichting waves which eventually degenerate to turbulence by the action of small-scale three-dimensionalities.