Abstract
A new theory for dynamics of concentrated colloidal suspensions and the colloidal glass transition is proposed. The starting point is the memory function representation of the density correlation function. The memory function can be expressed in terms of a time-dependent pair-density correlation function. An exact, formal equation of motion for this function is derived and a factorization approximation is applied to its evolution operator. In this way a closed set of equations for the density correlation function and the memory function is obtained. The theory predicts an ergodicity breaking transition similar to that predicted by the mode-coupling theory, but at a higher density.

This publication has 0 references indexed in Scilit: