Microfilament-rich cells in the toad bladder epithelium
- 1 June 1979
- journal article
- research article
- Published by Springer Nature in The Journal of Membrane Biology
- Vol. 48 (2) , 167-180
- https://doi.org/10.1007/bf01872857
Abstract
Basal cells of the bladder epithelium ofBufo marinus have been found heterogenous and consist of microfilament-rich cells (MFR-cell) and undifferentiated cells (Un-cell). The MFR-cell, which represents approximately 20% of the epithelial cell population, lies between the epithelial layer lining the urinary space and the basement membrane; it extends under several epithelial cells by processes of varying widths and lengths which contact, via desmosomes, other MFR-cells, as well as cells in the superficial layer, i.e., granular and mitochondria-rich cells. The cytoplasm of MFR-cell is filled with intermediate filaments arranged in bundles which run parallel to the plane of the epithelium and no dense granules, typical of granular cells, have been detected. Strong immunofluorescence for actin is associated with cells which occupy the same basal position as MFR-cells. Undifferentiated cells have no contact via desmosomes with adjacent cells and their cytoplasm is filled with free ribosomes; they lack bundles of intermediate filaments and posses no specialized organelles. After a 4-hr pulse of3H-thymidine, 1.5% of epithelial cells incorporate thymidine into nuclear DNA, out of which 3/4 are basally 1/4 are apically located. Identification of cell types by electron microscopy reveals that ∼10% of undifferentiated basal cells are labeled, whereas less than 0.1% of granular cells and no MFR-cells incorporate3H-thymidine into DNA. When dissociated from the epithelium and separated by isopycnic centrifugation, MFR-cells possess a mean buoyant density of approximately 1.025, cosediment with mitochondria-rich cells and exhibit a strong immunofluorescence for actin. The function of MFR-cells remains unknown; however, they may play a role in cell coupling and responses to hormonal and physical factors.This publication has 21 references indexed in Scilit:
- Isolation and separation of toad bladder epithelial cellsThe Journal of Membrane Biology, 1979
- Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture techniqueThe Journal of Membrane Biology, 1978
- The hydrosmotic effect of vasopressin: A scanning electron-microscope studyThe Journal of Membrane Biology, 1975
- Binding of aldosterone by mitochondria-rich cells of the toad urinary bladderNature, 1975
- Partition of Tissue Functions in Epithelia: Localization of Enzymes in "Mitochondria-Rich" Cells of Toad Urinary BladderScience, 1974
- Lymphoid cells in the turtle bladderThe Anatomical Record, 1973
- Clarification of the intercellular space phenomenon in toad urinary bladderThe Journal of Membrane Biology, 1972
- Aldosterone induced morphological changes in amphibian epithelia in vivoJournal of Steroid Biochemistry, 1972
- Permeability and Structure of Junctional Membranes at an Electrotonic SynapseScience, 1969
- Reversible stimulation of sodium transport in the toad bladder by stretchJournal of Clinical Investigation, 1969