Connections of the bullfrog striatum: Afferent organization

Abstract
Afferents to the dorsal and ventral striatum of the bullfrog (Rana catesbeiana) were revealed by horseradish peroxidase (HRP) histochemistry. Anterograde tracing techniques (autoradiography and anterograde HRP transport) were then used to confirm the projections and to describe their terminal fields within the striatum. The major input arises from the ipsi-lateral lateral anterior and central thalamic nuclei, which receive tectal (Rubinson, ′68) and toral (Neary, ′74) input, respectively. These projections terminate in a dense, homogeneous field within the striatal neuropil adjacent to the cell plates of both striatal divisions. A second heavy input arises from the anterior entopeduncular nucleus bilaterally, with axons from the contralateral side crossing in the anterior commissure. This input terminates in both striatal divisions but is heaviest ventrally, Sparser inputs are present from the ipsilateral lateral and medial amygdalar nuclei, the preoptic area (mainly from the very caudal suprachiasmatic division), the posterior tuberculum, and the ipsilateral superficial isthmal reticular nucleus of the tegmentum. All these afferents, with the possible exception of the preoptic input, ascend to the striatum via the lateral forebrain bundle, and all innervate both striatal divisions. The preoptic input terminates within the cell plates, as well as subpially in a pattern similar to that described for tubercular input (Neary and Wilczynski, ′77). The tegmental input is very sparse and is most apparent superficially. Afferents from pallial telencephalic areas are not present, suggesting that although an-urans receive striatal input from the diencephalon and mesencephalon, they do not possess a homolog of the mammalian corticostriatal system. Further, the extremely heavy input from the middle dorsal thalamic zone suggests that a major function of the anuran striatum involves processing sensory information from the midbrain roof.