Abstract
We consider a compact binary system in which a Wolf-Rayet star supplies matter onto a stellar mass black hole or a neutron star. This matter forms an accretion disk which ejects a jet as observed in Galactic microquasars. A part of the jet kinetic energy, typically 10%, can be transfered to relativistic nuclei. These nuclei lose nucleons as a result of photo-disintegration process in collisions with thermal photons from the accretion disk and the massive star. Due to the head on photon-nucleus collisions most of neutrons released from nuclei move towards the surface of the accretion disk and/or the massive star producing neutrinos in collisions with the matter. We calculate the spectra of muon neutrinos and expected neutrino event rates in a 1 km^2 neutrino detector of the IceCube type from a microquasar inside our Galaxy applying, as an example, the parameters of the Cyg X-3 binary system, provided that nuclei are accelerated to the Lorentz factors above 10^6 with the power law spectrum with an index close to 2.
All Related Versions