A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems
- 1 January 1982
- journal article
- research article
- Published by Wiley in Mathematical Methods in the Applied Sciences
- Vol. 4 (1) , 415-424
- https://doi.org/10.1002/mma.1670040126
Abstract
The theory of Rayleigh functionals for non‐linear eigenvalue problems T(λ) u = 0 is extended to cases where the functional is defined only on a proper subset. The theory applies to problems which do not satisfy an overdamping condition and yields a minimax characterization of eigenvalues. Applications to damped free vibrations of an elastic body are discussed.Keywords
This publication has 12 references indexed in Scilit:
- Elementary localization theorems for nonlinear eigenproblemsJournal of Mathematical Analysis and Applications, 1974
- A minimax principle for nonoverdamped systemsInternational Journal of Engineering Science, 1974
- Operator equations and nonlinear eigenparameter problemsJournal of Functional Analysis, 1973
- A class of nonlinear eigenvalue problemsJournal of Functional Analysis, 1968
- Variationsprinzipien bei nichtlinearen EigenwertaufgabenArchive for Rational Mechanics and Analysis, 1968
- Some variational principles for a nonlinear eigenvalue problemJournal of Mathematical Analysis and Applications, 1967
- A mimmax theory for overdamped systemsArchive for Rational Mechanics and Analysis, 1964
- Eine neue Methode zur Behandlung nichtlinearer EigenwertaufgabenMathematische Zeitschrift, 1958
- Über eine Klasse von Eigenwertaufgaben mit nichtlinearer ParameterabhängigkeitMathematische Nachrichten, 1954
- NOTE ON A GENERALIZATION OF RAYLEIGH'S PRINCIPLEThe Quarterly Journal of Mechanics and Applied Mathematics, 1952