METABOLISM OF ANDROGENS IN VITRO BY HUMAN FACIAL AND AXILLARY SKIN

Abstract
SUMMARY: Human skin from forehead, cheek and axilla was incubated in vitro with [7α-3H]dehydroepiandrosterone (DHA), [7α-3H]DHA sulphate, [7α-3H]-androstenedione and [7α-3H]testosterone. The following enzyme activities were detected: 3β-hydroxysteroid dehydrogenase Δ4-5 isomerase, 17β-hydroxysteroid dehydrogenase, 3β-hydroxysteroid dehydrogenase, 3α-hydroxysteroid dehydrogenase, 5α-reductase, 5β-reductase, sulphotransferase, sulphatase, steroid hydroxylase. 5α-Reduced steroids were the major metabolites. All four substrates were converted to 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol. In axillary skin, conversion of 17-oxosteroids to 17β-hydroxysteroids was favoured, 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol being major metabolites. In facial skin, formation of 17-oxosteroids predominated with little accumulation of 5α-dihydrotestosterone or 5α-androstane-3α,17β-diol. 5α-Androstane-3β,17β-diol was a metabolite of DHA, androstenedione and testosterone but was found in lower amounts than 5α-androstane-3α,17β-diol. Similarly conversions to epiandrosterone were much lower than to androsterone in all the skin specimens. It was concluded that the differences in accumulation of 5α-dihydrotestosterone were determined by the differences in 17β-oxidoreduction rather than differences in 5α-reductase, the activity of which was high in all skin specimens.