Hamiltonian magnetic reconnection

Abstract
Magnetic reconnection in two dimensional (2D), collisionless, non-dissipative regimes is investigated analytically and numerically by means of a finite difference code in the nonlinear regime where the island size becomes macroscopic. The cross-shaped structure of the reconnection region, originally reported by Cafaro et al (1998 Phys. Rev. Lett. 80 20) is analysed as a function of the ratio between the ion sound Larmor radius and the inertial skin depth. This cross shape structure is found to survive in the presence of weak dissipation. Further insight on the quasi-explosive behaviour of the magnetic island width as a function of time and on the spatial structure of the perturbed current density is provided. We confirm that the amount of reconnected flux becomes of order unity on the time scale of the inverse linear growth rate. Results in the collisionless limit are interpreted on the basis of the Hamiltonian properties of the adopted collisionless, 2D, fluid model. Thus, collisionless reconnection is a fast, non-steady-state process, fundamentally different from 2D resistive magnetic reconnection, of which the Sweet-Parker model is the classic paradigm.

This publication has 23 references indexed in Scilit: