Isolation, composition, and biological activity of sugar chains of porcine oocyte zona pellucida 55K glycoproteins

Abstract
ZP3, a preparation of the 55K families of porcine oocyte zona pellucida, possesses carbohydrate-dependent ligand activity for boar sperm. The aim of the present study was to analyze ZP3 N- and O-linked oligosaccharides with respect to size distribution, composition, and role in sperm-zona recognition events. Digestion of denatured ZP3 with peptide N-glycosidase F (PNGaseF) released the majority of N-glycans which fractionated on Sephadex G-75 resin as a polydisperse population with apparent molecular masses ranging from 1,900–8,200 Da. The higher molecular weight N-glycans were characterized by the presence of strongly anionic sulfated/sialylated polylactosamine structures. Alkaline-borohydride treatment of the PNGaseF-digested core proteins liberated O-glycans as a heterogeneous population of oligosaccharide alcohols, which were fractionated on a Sephadex G-50 column. Compositional analyses indicated sulfated polylactosamine units associated with the higher molecular weight O-glycans. Preincubation of boar sperm with ZP3 or purified O-glycans, but not N-glycans, inhibited subsequent attachment to zona-encased oocytes. Purified O-glycans were, however, 2 to 3 orders of magnitude less effective than ZP3 as competitive ligands. The results document the extreme heterogeneity of the ZP3 carbohydrate moiety, in large part attributable to a board spectrum of variably sized N- and O-linked sulfated polylactosamines. Ligand competition bioassays suggest that O-glycans mediate, at least in part, the sperm adhesive properties of ZP3 and strongly imply that high-affinity interaction of ZP3 sugar chains with complementary sperm receptors is dependent upon their covalent association with core proteins.