Abstract
A model based on a stress intensity factor for a growing transverse ply crack is outlined. The model is applied to experimental observations of crack growth in a trans parent 0/90/0 glass fibre/epoxy laminate under fatigue loading. The crack growth rate is found to be independent of crack length but to depend on the spacing between cracks. Under static loading and fatigue loading at high maximum stress, cracks grow by fast frac ture. Slow crack growth is observed at lower maximum fatigue stresses and in the later stages of fatigue tests at higher stresses when the crack spacing is small. Crack growth rates can be described using a Paris relation.