Range of Motion of the Foot as a Function of Age

Abstract
Movement of the foot is essential for human locomotion. The purpose of this paper was to quantify the range of motion of the foot as a function of age and to compare the rage of motion measurements for the foot in a laboratory coordinate system and a coordinate system fixed to the tibia. The measurements were taken in vivo using a range of motion instrument developed by Allinger (University of Calgary, Canada, 1990) from 121 subjects. The results suggest that: (1) the range of motion in general is greater for women than for men in the young adult group; (2) the range of motion in general is in the same order of magnitude for women and men in the oldest age group; and (3) the range of motion is about 8° smaller in dorsiflexion and about 8° higher in plantarflexion for women than for men in the oldest age group. It is speculated that physical activity and common shoe wear are factors influencing the age- and gender-dependent differences in range of motion. Furthermore, it has been shown that the range of motion values measured in a laboratory coordinate system and in a coordinate system fixed in the tibia are different in all directions except inversion. The differences in plantarflexion and dorsiflexion and inversion and eversion are relatively small. However, they are substantial for adduction and abduction. In all cases, the results were bigger for measurements in the laboratory coordinate system compared with the tibia coordinate system, because the movement of the lower leg was included in the measurements in the laboratory coordinate system. The data indicate that foot range of motion is different for women and men. Consequently, it is speculated that these differences may be related to possible overloading of the locomotor system, especially in sporting activities in which the loading of the foot is significant. The differences in the plantarflexion and dorsiflexion direction were assumed to influence the loading of the Achilles tendon, and it is suggested that some of the Achilles tendon problems may be predictable based on range of motion measurements.