Model-based variance-stabilizing transformation for Illumina microarray data
Top Cited Papers
Open Access
- 4 January 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in Nucleic Acids Research
- Vol. 36 (2) , e11
- https://doi.org/10.1093/nar/gkm1075
Abstract
Variance stabilization is a step in the preprocessing of microarray data that can greatly benefit the performance of subsequent statistical modeling and inference. Due to the often limited number of technical replicates for Affymetrix and cDNA arrays, achieving variance stabilization can be difficult. Although the Illumina microarray platform provides a larger number of technical replicates on each array (usually over 30 randomly distributed beads per probe), these replicates have not been leveraged in the current log2 data transformation process. We devised a variance-stabilizing transformation (VST) method that takes advantage of the technical replicates available on an Illumina microarray. We have compared VST with log2 and Variance-stabilizing normalization (VSN) by using the Kruglyak bead-level data (2006) and Barnes titration data (2005). The results of the Kruglyak data suggest that VST stabilizes variances of bead-replicates within an array. The results of the Barnes data show that VST can improve the detection of differentially expressed genes and reduce false-positive identifications. We conclude that although both VST and VSN are built upon the same model of measurement noise, VST stabilizes the variance better and more efficiently for the Illumina platform by leveraging the availability of a larger number of within-array replicates. The algorithms and Supplementary Data are included in the lumi package of Bioconductor, available at: www.bioconductor.org .Keywords
This publication has 18 references indexed in Scilit:
- nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarraysBiology Direct, 2007
- Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platformsNucleic Acids Research, 2005
- A novel, high-performance random array platform for quantitative gene expression profilingGenome Research, 2004
- At What Scale Should Microarray Data Be Analyzed?American Journal of PharmacoGenomics, 2004
- Estimation of transformation parameters for microarray dataBioinformatics, 2003
- Variance stabilization applied to microarray data calibration and to the quantification of differential expressionBioinformatics, 2002
- A variance-stabilizing transformation for gene-expression microarray dataBioinformatics, 2002
- Minimum information about a microarray experiment (MIAME)—toward standards for microarray dataNature Genetics, 2001
- A Model for Measurement Error for Gene Expression ArraysJournal of Computational Biology, 2001
- Estimating Transformations for Regression via Additivity and Variance StabilizationJournal of the American Statistical Association, 1988