Viscoelastic Properties of the Aortic Valve Interstitial Cell
- 2 February 2009
- journal article
- research article
- Published by ASME International in Journal of Biomechanical Engineering
- Vol. 131 (4) , 041005
- https://doi.org/10.1115/1.3049821
Abstract
There has been growing interest in the mechanobiological function of the aortic valve interstitial cell (AVIC) due to its role in valve tissue homeostasis and remodeling. In a recent study we determined the relation between diastolic loading of the aortic valve (AV) leaflet and the resulting AVIC deformation, which was found to be substantial. However, due to the rapid loading time of the AV leaflets during closure , time-dependent effects may play a role in AVIC deformation during physiological function. In the present study, we explored AVIC viscoelastic behavior using the micropipette aspiration technique. We then modeled the resulting time-length data over the 100 s test period using a standard linear solid model, which included Boltzmann superposition. To quantify the degree of creep and stress relaxation during physiological time scales, simulations of micropipette aspiration were preformed with a valve loading time of 0.05 s and a full valve closure time of 0.3 s. The 0.05 s loading simulations suggest that, during valve closure, AVICs act elastically. During diastole, simulations revealed creep (4.65%) and stress relaxation (4.39%) over the 0.3 s physiological time scale. Simulations also indicated that if Boltzmann superposition was not used in parameter estimation, as in much of the micropipette literature, creep and stress relaxation predicted values were nearly doubled (7.92% and 7.35%, respectively). We conclude that while AVIC viscoelastic effects are negligible during valve closure, they likely contribute to the deformation time-history of AVIC deformation during diastole.
Keywords
This publication has 21 references indexed in Scilit:
- On the biomechanics of heart valve functionJournal of Biomechanics, 2009
- Nuclear Shape, Mechanics, and MechanotransductionCirculation Research, 2008
- Universal physical responses to stretch in the living cellNature, 2007
- Synergistic effects of cyclic tension and transforming growth factor-β1 on the aortic valve myofibroblastCardiovascular Pathology, 2007
- In-Situ Deformation of the Aortic Valve Interstitial Cell Nucleus Under Diastolic LoadingJournal of Biomechanical Engineering, 2007
- Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissuesBiomaterials, 2006
- Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopyPublished by Elsevier ,2006
- The effects of cellular contraction on aortic valve leaflet flexural stiffnessJournal of Biomechanics, 2006
- Mechanical models for living cells—a reviewJournal of Biomechanics, 2006
- The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytesJournal of Orthopaedic Research, 2004