Higher Order Local Accuracy by Averaging in the Finite Element Method
Open Access
- 1 January 1977
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 31 (137) , 94-111
- https://doi.org/10.2307/2005782
Abstract
Let be a Ritz-Galerkin approximation, corresponding to the solution u of an elliptic boundary value problem, which is based on a uniform subdivision in the interior of the domain. In this paper we show that by "averaging" the values of in the neighborhood of a point x we may (for a wide class of problems) construct an approximation to which is often a better approximation than itself. The "averaging" operator does not depend on the specific elliptic operator involved and is easily constructed.Keywords
This publication has 12 references indexed in Scilit:
- Estimates for spline projectionsRevue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 1976
- Maximum-Norm Interior Estimates for Ritz-Galerkin MethodsMathematics of Computation, 1975
- A survey of some finite element methods proposed for treating the dirichlet problemAdvances in Mathematics, 1975
- Interior Estimates for Ritz-Galerkin MethodsMathematics of Computation, 1974
- Collocation at Gaussian PointsSIAM Journal on Numerical Analysis, 1973
- Rate of Convergence Estimates for Nonselfadjoint Eigenvalue ApproximationsMathematics of Computation, 1973
- The finite element method with Lagrangian multipliersNumerische Mathematik, 1973
- Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sindAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1971
- Bounds for a class of linear functionals with applications to Hermite interpolationNumerische Mathematik, 1971
- Triangular Elements in the Finite Element MethodMathematics of Computation, 1970