Line defects along the axis of rotationally inhomogeneous media
- 1 April 1987
- journal article
- research article
- Published by Taylor & Francis in Philosophical Magazine A
- Vol. 55 (4) , 537-542
- https://doi.org/10.1080/01418618708209914
Abstract
In a rotationally inhomogeneous medium the elastic constants show an angular dependence Cijkl (ω) around an axis. Grain boundaries, bicrystals, wedges and wedge cracks are special cases of a rotationally inhomogeneous medium. The displacement field u and the vector Airy stress function Ø for a dislocation with Burgers vector b and a line force of strength f acting along the central axis of such a medium are derived in terms of the integral theory of elasticity.Keywords
This publication has 12 references indexed in Scilit:
- Anisotropic continuum theory of lattice defectsProgress in Materials Science, 1980
- Dislocation core energies in the Peierls modelPhilosophical Magazine A, 1978
- Stress intensity factor calculations based on a conservation integralInternational Journal of Solids and Structures, 1978
- Elastic Quasi‐Isotropy Normal to the Basal Plane in the Hexagonal SystemPhysica Status Solidi (b), 1976
- An image force theorem for a dislocation near a crack in an anisotropic elastic mediumJournal of Physics F: Metal Physics, 1975
- Stress functions for line defects in anisotropic elastic mediaScripta Metallurgica, 1975
- An image force theorem for dislocations in anisotropic bicrystalsJournal of Physics F: Metal Physics, 1974
- On a class of conservation laws in linearized and finite elastostaticsArchive for Rational Mechanics and Analysis, 1972
- A proof of lothe's theoremPhilosophical Magazine, 1967
- Dislocation bends in anisotropic mediaPhilosophical Magazine, 1967