This article discusses remote sensing of atmospheric temperatures with the NEMS microwave spectrometer on the Nimbus 5 satellite, and the accuracy with which atmospheric temperatures can be determined by NEMS. The sensitivity of the NEMS instrument allows measurement of temperature profiles having vertical resolution of the respective NEMS weighting functions (∼10 km) with an rms accuracy of a few tenths of a degree Kelvin for a 16 s integration time. The accuracy of NEMS in estimating atmospheric temperatures at the discrete levels (∼2 km vertical resolution in the lower troposphere) used in the operational numerical model of the National Meteorological Center (NMC) is ∼2 K rms, as determined by comparing NEMS results with ground truth data obtained from the NMC operational analysis and from coincident radiosondes. These accuracies are consistent with the theoretical accuracies expected for NEMS. Abstract This article discusses remote sensing of atmospheric temperatures with the NEMS microwave spectrometer on the Nimbus 5 satellite, and the accuracy with which atmospheric temperatures can be determined by NEMS. The sensitivity of the NEMS instrument allows measurement of temperature profiles having vertical resolution of the respective NEMS weighting functions (∼10 km) with an rms accuracy of a few tenths of a degree Kelvin for a 16 s integration time. The accuracy of NEMS in estimating atmospheric temperatures at the discrete levels (∼2 km vertical resolution in the lower troposphere) used in the operational numerical model of the National Meteorological Center (NMC) is ∼2 K rms, as determined by comparing NEMS results with ground truth data obtained from the NMC operational analysis and from coincident radiosondes. These accuracies are consistent with the theoretical accuracies expected for NEMS.