Relation of left ventricular hemodynamic load and contractile performance to left ventricular mass in hypertension.

Abstract
The weak relation of systolic blood pressure to left ventricular mass in hypertensive patients is often interpreted as evidence of nonhemodynamic stimuli to muscle growth. To test the hypothesis that left ventricular chamber size, reflecting hemodynamic volume load and myocardial contractility, influences the development of left ventricular hypertrophy in hypertension, we studied actual and theoretic relations of left ventricular mass to left ventricular diastolic chamber volume, pressure and volume load, and an index of contractility. Data were obtained from independently measured M-mode and two-dimensional echocardiograms in 50 normal subjects and 50 untreated patients with essential hypertension. Two indices of overall left ventricular load were assessed: total load (systolic blood pressure x left ventricular endocardial surface area) and peak meridional force (systolic blood pressure x left ventricular cross sectional area). A theoretically optimal left ventricular mass, allowing each subject to achie...