Abstract
A simple analytical scheme, involving the distribution of nitrogen, to scale up photosynthesis from leaf to canopy is proposed. The scheme is based on the assumption that there are two pools of nitrogen in leaves: nitrogen in photosynthetic, degradable structures (Np) and nitrogen in non‐photosynthetic and non‐degradable structures (Ns). The rate of photon‐saturated photosynthesis, Fm, is assumed to be proportional to Np and is distributed inside the canopy similarly to photon flux density (PFD). Prior assumptions of an optimum distribution of nitrogen are not a prerequisite. Calculations made with the scheme lead to development of the hypothesis that the canopy can be treated as a ‘big leaf’ on the time scales involved in acclimation of photosynthesis to PFD. Simulations using parameters for tree species with different requirements for PFD show that shade‐tolerant species may have denser canopies than sun‐demanding species because of smaller amounts of non‐photosynthetic structural nitrogen and/or supporting tissue in their leaves.