Abstract
Let M be a closed subset of a Banach space E such that the norms of both E and E* are Fréchet differentiable. It is shown that the distance function d(·, M) is Fréchet differentiable at a point x of EM if and only if the metric projection onto M exists and is continuous at X. If the norm of E is, moreover, uniformly Gateaux differentiable, then the metric projection is continuous at x provided the distance function is Gateaux differentiable with norm-one derivative. As a corollary, the set M is convex provided the distance function is differentiable at each point of EM. Examples are presented to show that some of our hypotheses are needed.

This publication has 16 references indexed in Scilit: