Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves
- 1 January 1977
- journal article
- research article
- Published by Journal of Neurosurgery Publishing Group (JNSPG) in Journal of Neurosurgery
- Vol. 46 (1) , 36-45
- https://doi.org/10.3171/jns.1977.46.1.0036
Abstract
✓ In anesthetized, artificially ventilated dogs, the intracranial cerebrospinal fluid (CSF) pulse waves were studied simultaneously with the central aortic pressure, central venous pressure (CVP), and the sagittal sinus pressure under physiological conditions and in normovolemic arterial hypotension and hypertension, in acute cardiac insufficiency of the right atrium, in raised intracranial pressure (ICP), and in arterial hypoxemia. The physiological CSF pulsations are shown to be mainly arterial in origin. In the diastolic phase, the descending part of the pulse curve can be modified by venous superpositions coinciding with the right atrial “A” wave. With increase of ICP the configuration of the CSF pulsations changes: the venous superpositions disappear and the waves become more and more arterial in shape. Furthermore, the pulse amplitude increases considerably. The same change can be observed when cerebral vessels are dilated by arterial hypoxemia. During cardiac insufficiency and consecutive increase of CVP, the CSF pulse curve is venous in shape and the right atrial “A” wave predominates. In arterial hypotension, CSF pressure decreased. Conversely, in angiotensin-induced systemic arterial hypertension, CSF pressure and its pulse amplitude increased. It is concluded that both systemic arterial blood pressure and cerebrovascular reactivity are major determinants for the shape and the pressure amplitude of the intracranial CSF pulse waves. In the presence of cerebral vasodilatation, systemic arterial blood pressure may be an important factor in raising ICP and altering the brain tissue compliance, because cerebral vascular damping of the arterial pulse is diminished and the arterial pressure head may be directly transmitted to the cerebral capillary bed.Keywords
This publication has 36 references indexed in Scilit:
- Method for measuring brain tissue pressureJournal of Neurosurgery, 1975
- Effect of respiratory movement on cerebrospinal fluid dynamics in hydrocephalic infants with shuntsJournal of Neurosurgery, 1975
- Intracranial volume-pressure relationships during experimental brain compression in primates: 2. Effect of induced changes in systemic arterial pressure and cerebral blood flowJournal of Neurology, Neurosurgery & Psychiatry, 1974
- Effect of positional changes and jugular vein compression on the pressure gradient across the arachnoid villi and granulations of the dogJournal of Neurosurgery, 1973
- Effects of prolonged cerebrospinal fluid shunting on the skull and brainJournal of Neurosurgery, 1973
- The Response of Brain Surface Pressure to Hypercapnic Hypoxia and HyperventilationAnesthesiology, 1972
- On the origin of respiratory waves in circulationPflügers Archiv - European Journal of Physiology, 1971
- Pathophysiological Aspects of the Blood Brain Barrier Change in Acute Arterial HypertensionEuropean Neurology, 1971
- Cerebrospinal Fluid Pressure and PulsatilityEuropean Neurology, 1969
- HEMODYNAMIC INFLUENCES UPON BRAIN AND CEREBROSPINAL FLUID PULSATIONS AND PRESSURESPublished by Wolters Kluwer Health ,1965