Level Spacing Distribution of Crossover Random Matrix Ensembles
Abstract
We consider unitary invariant random matrix ensembles which obey spectral statistics different from the Wigner-Dyson, including unitary ensembles with slowly (~(log x)^2) growing potentials and the finite-temperature fermi gas model. When the deformation parameters in these matrix ensembles are small, the asymptotically translational-invariant region in the spectral bulk is universally governed by a one-parameter generalization of the sine kernel. We provide an analytic expression for the distribution of the eigenvalue spacings of this universal asymptotic kernel, which is a hybrid of the Wigner-Dyson and the Poisson distributions, by determining the Fredholm determinant of the universal kernel in terms of a Painleve VI transcendental function.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: