Essential residues in angiotensin converting enzyme: modification with 1-fluoro-2,4-dinitrobenzene

Abstract
The peptidase and esterase activities of rabbit pulmonary angiotensin converting enzyme (ACE) are rapidly abolished on reaction with 1-fluoro-2,4-dinitrobenzene (Dnp-F). Inactivation follows first-order kinetics with respect to the reagent and is accompanied by stoichiometric incorporation of 3,5-[3H]Dnp, indicating that the effect is due to a specific modification of the enzyme. Thin-layer chromatography of an acid hydrolysate of the modified enzyme indicates that most of the radioactive label is present as O-Dnp-tyrosine (65 to greater than 95%) and the rest as N epsilon-Dnp-lysine. The pH dependence of the reaction is consistent with modification of either tyrosine or lysine. The presence of a competitive inhibitor effectively protects the enzyme against inactivation by Dnp-F. Acetylation of ACE with N-acetylimidazole also protects the enzyme against modification with Dnp-F. The results indicate the presence of catalytically essential tyrosine and lysine residues at the active site of ACE.