The Time Course of Intracranial Pathophysiological Changes following Experimental Subarachnoid Haemorrhage in the Rat

Abstract
The rat subarachnoid haemorrhage (SAH) model was further studied to establish the precise time course of the globally reduced CBF that follows and to ascertain whether temporally related changes in cerebral perfusion pressure (CPP) and intracranial pressure (ICP) take place. Parallel ultrastructural studies were performed upon cerebral arteries and their adjacent perivascular subarachnoid spaces. SAH was induced by a single intracisternal injection of autologous arterial blood. Serial measurements of regional cortical CBF by hydrogen clearance revealed that experimental SAH resulted in an immediate 50% global reduction in cortical flows that persisted for up to 3 h post SAH. At 24 h, flows were still significantly reduced at 85% of control values (p < 0.05), but by 48 h had regained normal values and were maintained up to 5 days post SAH. ICP rose acutely after haemorrhage to nearly 50 mm Hg with C-type pressure waves being present. ICP then fell slowly, only fully returning to control levels at 72 h. Acu...