Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters

Top Cited Papers
Open Access
Abstract
Wind is widely recognized as one of the dominant controls of snow accumulation and distribution in exposed alpine regions. Complex and highly variable wind fields in rugged terrain lead to similarly complex snow distribution fields with areas of no snow adjacent to areas of deep accumulation. Unfortunately, these complexities have limited inclusion of wind redistribution effects in spatial snow distribution models. In this study the difficulties associated with physically exhaustive wind field modeling are avoided and terrain-based parameters are developed to characterize wind effects. One parameter, , was based on maximum upwind slopes relative to seasonally averaged winds to characterize the wind scalar at each pixel location in an alpine basin. A second parameter, , measured upwind breaks in slope from a given location and was combined with an upwind application of to create a drift delineator parameter, D0, which was used to delineate sites of intense redeposition on lee slopes. Based on 504 ... Abstract Wind is widely recognized as one of the dominant controls of snow accumulation and distribution in exposed alpine regions. Complex and highly variable wind fields in rugged terrain lead to similarly complex snow distribution fields with areas of no snow adjacent to areas of deep accumulation. Unfortunately, these complexities have limited inclusion of wind redistribution effects in spatial snow distribution models. In this study the difficulties associated with physically exhaustive wind field modeling are avoided and terrain-based parameters are developed to characterize wind effects. One parameter, , was based on maximum upwind slopes relative to seasonally averaged winds to characterize the wind scalar at each pixel location in an alpine basin. A second parameter, , measured upwind breaks in slope from a given location and was combined with an upwind application of to create a drift delineator parameter, D0, which was used to delineate sites of intense redeposition on lee slopes. Based on 504 ...