Abstract
A new general beam optimization algorithm for inverse treatment planning is presented. It utilizes a new formulation of the probability to achieve complication-free tumour control. The new formulation explicitly describes the dependence of the treatment outcome on the incident fluence distribution, the patient geometry, the radiobiological properties of the patient and the fractionation schedule. In order to account for both measured and non-measured positioning uncertainties, the algorithm is based on a combination of dynamic and stochastic optimization techniques. Because of the difficulty in measuring all aspects of the intra- and interfractional variations in the patient geometry, such as internal organ displacements and deformations, these uncertainties are primarily accounted for in the treatment planning process by intensity modulation using stochastic optimization. The information about the deviations from the nominal fluence profiles and the nominal position of the patient relative to the beam that is obtained by portal imaging during treatment delivery, is used in a feedback loop to automatically adjust the profiles and the location of the patient for all subsequent treatments. Based on the treatment delivered in previous fractions, the algorithm furnishes optimal corrections for the remaining dose delivery both with regard to the fluence profile and its position relative to the patient. By dynamically refining the beam configuration from fraction to fraction, the algorithm generates an optimal sequence of treatments that very effectively reduces the influence of systematic and random set-up uncertainties to minimize and almost eliminate their overall effect on the treatment. Computer simulations have shown that the present algorithm leads to a significant increase in the probability of uncomplicated tumour control compared with the simple classical approach of adding fixed set-up margins to the internal target volume.