Relaxed ordered-subset algorithm for penalized-likelihood image restoration

Abstract
The expectation-maximization (EM) algorithm for maximum-likelihood image recovery is guaranteed to converge, but it converges slowly. Its ordered-subset version (OS-EM) is used widely in tomographic image reconstruction because of its order-of-magnitude acceleration compared with the EM algorithm, but it does not guarantee convergence. Recently the ordered-subset, separable-paraboloidal-surrogate (OS-SPS) algorithm with relaxation has been shown to converge to the optimal point while providing fast convergence. We adapt the relaxed OS-SPS algorithm to the problem of image restoration. Because data acquisition in image restoration is different from that in tomography, we employ a different strategy for choosing subsets, using pixel locations rather than projection angles. Simulation results show that the relaxed OS-SPS algorithm can provide an order-of-magnitude acceleration over the EM algorithm for image restoration. This new algorithm now provides the speed and guaranteed convergence necessary for efficient image restoration.

This publication has 23 references indexed in Scilit: