Precipitation phenomena in high-dose iron-implanted silica and annealing behavior

Abstract
The effects of high-dose iron implantation into high-purity fused silica have been investigated by conversion-electron Mössbauer spectroscopy, transmission electron microscopy, Rutherford backscattering, and optical spectroscopy. In addition to isolated Fe2+ ions, samples subjected to doses of 4⊠1016 and 6 ⊠ 1016 ions cm−2 were found to contain homogeneously dispersed, equidimensional, crystalline particles ⋍2 nm, similar to Fe3O4. Precipitated spherical particles of metallic α-Fe⋍4 nm were observed in samples receiving a dose of ⋍ 1017 ions cm−2; as the dose was raised to 2.5 ⊠ 1017 ions cm−2 the mean size of these particles reached ⋍ 30 nm. Annealing in air to 800°C resulted in the growth of acicular grains of α-Fe2O3 ⋍ 20–300 nm. The optical spectra of the implanted layers are compared with the predictions of small particle theory.
Keywords

This publication has 9 references indexed in Scilit: