Conditioning maps on orthomodular lattices

Abstract
Let (χ Σ, μ) be a probability space, so that X is a non-empty set, Σ is a Boolean a-algebra of subsets of X, and μ is a probability measure defined on Σ. If D Ε S is such that μ(D)≠0, then one traditionally associates with D a new probability measure μD, called the conditional probability measure determined by D, and defined by μD(E)= μ(DE)/μ(D), for all EΕΣ.

This publication has 1 reference indexed in Scilit: