Abstract
The tubular cells from the thick ascending limb of the loop of Henle in rabbit kidney medulla contain in their basallateral surfaces a complex system of interdigitations. Within these interdigitations, the plasma membranes are separated by extracellular spaces of relatively constant width that contain a previously undescribed fibrillar system. The structural organization and distribution of this intercellular fibrillar skeleton was studied using freeze-fracture etch and then section electron microscopy. The skeleton is comprised of discrete strands with a density of 300 to 400 per μm2 evenly distributed along the entire basal-lateral region. Each strand has the shape of a brace and it is constructed from up to eight finer filaments each having a width of about 2 nm. The filaments are tightly joined together along their shafts for about 30 nm but they separate at both ends for about 10 nm before contacting the external surface of the plasma membrane. We propose that this intercellular fibrillar skeleton is responsible for maintaining the wide (about 50 nm) and uniform plasma membrane separation along the entire length of the basallateral region of the tubular cells of the thick ascending limb.