Rotational Diffusion Model with a Variable Collision Distribution

Abstract
Starting with an m‐diffusion model a matrix description is given of the rotational motion of a dipole molecule undergoing frequent collisions. This treatment gives rise to an analytical expression for the dipole correlation function and for the angular momentum correlation function in which a limited number of parameters from the model appear. It is argued that the collision distribution which determines the rotational diffusion process need not necessarily be a Poisson distribution. In liquids with strong interactions the distribution is governed by the frequency distribution of the medium. This leads to the inclusion of a librational motion in the rotational diffusion model. A comparison of simulations with different collision distributions and experimental data is given.