Dependent rounding in bipartite graphs

Abstract
We combine the pipage rounding technique of Ageev & Sviridenko with a recent rounding method developed by Srinivasan (2001), to develop a new randomized rounding approach for fractional vectors defined on the edge-sets of bipartite graphs. We show various ways of combining this technique with other ideas, leading to the following applications: richer random-graph models for graphs with a given degree-sequence; improved approximation algorithms for: (i) throughput-maximization in broadcast scheduling, (ii) delay-minimization in broadcast scheduling, and (iii) capacitated vertex cover; fair scheduling of jobs on unrelated parallel machines. A useful feature of our method is that it lets us prove certain (probabilistic) per-user fairness properties.

This publication has 10 references indexed in Scilit: