Abstract
This paper presents several solution-phase methods for the large-scale synthesis of metal nanoparticles with controllable compositions (e.g., spherical nanoparticles of gold/silver alloys), morphologies (e.g., nanospheres, triangular nanoplates, circular nanodisks, and nanocubes of silver), and structures (e.g., solid vs. hollow colloids). Spectral measurements indicated that the positions of surface plasmon resonance (SPR) bands for these nanoparticles could be tuned by varying all these parameters. The number of SPR peaks was found to increase as the symmetry of the nanoparticles decreased. In addition to their use as chromophores with strong extinction coefficients, these nanoparticles could serve as a platform to probe binding events of chemical and biochemical species on their surfaces. Gold nanoshells with hollow interiors were, in particular, shown to exhibit a much higher sensitivity to environmental changes than gold solid colloids with roughly the same size.

This publication has 0 references indexed in Scilit: