The fundamental thumb‐tip force vectors produced by the muscles of the thumb
- 1 March 2004
- journal article
- Published by Wiley in Journal of Orthopaedic Research
- Vol. 22 (2) , 306-312
- https://doi.org/10.1016/j.orthres.2003.08.001
Abstract
A rigorous description of the magnitude and direction of the 3D force vector each thumb muscle produces at the thumb‐tip is necessary to understand the biomechanical consequences to pinch of a variety of paralyses and surgical procedures (such as tendon transfers). In this study, we characterized the 3D force vector each muscle produces at the thumb‐tip, and investigated if these thumb‐tip force vectors scaled linearly with tendon tension. In 13 cadaver specimens, we measured the output 3D thumb‐tip force vector produced by each tendon acting on the thumb, plus two common tendon transfers, as a function of input tendon tension. After fixing the hand to a rigid frame, we mounted the thumb by configuring it in standardized key or opposition pinch posture and coupling the thumb‐tip to a rigidly held 6 degree‐of‐freedom force/torque sensor. Linear actuators applied tension to the distal tendons of the four extrinsic thumb muscles, and to six Nylon cords reproducing the lines of action of (i) the four intrinsic thumb muscles and (ii) two alternative tendon transfers commonly used to restore thumb opposition following low median nerve palsy. Each computer‐controlled linear actuator ramped tendon tension from zero to 1/3 of predicted maximal muscle force expected at each tendon, and back to zero, while we measured the 3D force vector at the thumb‐tip. In test/re‐test trials, we saw thumb‐tip force vectors were quite sensitive to mounting procedure, but also sensitive to variations in the seating of joint surfaces. We found that: (i) some thumb‐tip force vectors act in unexpected directions (e.g., the opponens force vector is parallel to the distal phalanx), (ii) the two tendon transfers produced patently different force vectors, and (iii) for most muscles, thumb‐tip force vectors do not scale linearly with tendon tension—likely due to load‐dependent viscoelastic tendon paths, joint seating and/or bone motion. Our 3D force vector data provide the first quantitative reference descriptions of the thumb‐tip force vectors produced by all thumb muscles and two tendon transfers. We conclude that it may not be realistic to assume in biomechanical models that thumb‐tip force vectors scale linearly with tendon tensions, and that our data suggest the thumb may act as a “floating digit” affected by load‐dependent trapezium motion. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.Keywords
This publication has 17 references indexed in Scilit:
- Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parametersJournal of Biomechanics, 2003
- Releasing the A3 pulley and leaving flexor superficialis intact increases pinch force following the Zancolli lasso procedures to prevent claw deformity in the intrinsic palsied fingerJournal of Orthopaedic Research, 2002
- Biomechanical evaluation of thumb opposition transfer insertion sitesThe Journal of Hand Surgery, 2001
- Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic musclesJournal of Biomechanics, 2000
- Large index-fingertip forces are produced by subject-independent patterns of muscle excitationJournal of Biomechanics, 1998
- Mechanical advantage of the thumb musclesJournal of Biomechanics, 1998
- A virtual five-link model of the thumbMedical Engineering & Physics, 1995
- Architecture of selected muscles of the arm and forearm: Anatomy and implications for tendon transferThe Journal of Hand Surgery, 1992
- Forces in the normal and abnormal handJournal of Orthopaedic Research, 1985