NO3−-induced pH Changes in Mammalian Cells
Open Access
- 1 August 1997
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 110 (2) , 185-200
- https://doi.org/10.1085/jgp.110.2.185
Abstract
The effect of NO3 − on intracellular pH (pHi) was assessed microfluorimetrically in mammalian cells in culture. In cells of human, hamster, and murine origin addition of extracellular NO3 − induced an intracellular acidification. This acidification was eliminated when the cytosolic pH was clamped using ionophores or by perfusing the cytosol with highly buffered solutions using patch-pipettes, ruling out spectroscopic artifacts. The NO3 −- induced pH change was not due to modulation of Na+/H+ exchange, since it was also observed in Na+/H+ antiport-deficient mutants. Though NO3 − is known to inhibit vacuolar-type (V) H+-ATPases, this effect was not responsible for the acidification since it persisted in the presence of the potent V-ATPase inhibitor bafilomycin A1. NO3 −/HCO3 − exchange as the underlying mechanism was ruled out because acidification occurred despite nominal removal of HCO3 −, despite inhibition of the anion exchanger with disulfonic stilbenes and in HEK 293 cells, which seemingly lack anion exchangers (Lee, B.S., R.B. Gunn, and R.R. Kopito. 1991. J. Biol. Chem. 266:11448– 11454). Accumulation of intracellular NO3 −, measured by the Greiss method after reduction to NO2 −, indicated that the anion is translocated into the cells along with the movement of acid equivalents. The simplest model to explain these observations is the cotransport of NO3 − with H+ (or the equivalent counter-transport of NO3 − for OH−). The transporter appears to be bi-directional, operating in the forward as well as reverse directions. A rough estimate of the fluxes of NO3 − and acid equivalents suggests a one-to-one stoichiometry. Accordingly, the rate of transport was unaffected by sizable changes in transmembrane potential. The cytosolic acidification was a saturable function of the extracellular concentration of NO3 − and was accentuated by acidification of the extracellular space. The putative NO3 −-H+ cotransport was inhibited markedly by ethacrynic acid and by α-cyano-4-hydroxycinnamate, but only marginally by 4,4′-diisothiocyanostilbene-2,2′ disulfonate or by p-chloromercuribenzene sulfonate. The transporter responsible for NO3 −-induced pH changes in mammalian cells may be related, though not identical, to the NO3 −-H+ cotransporter described in Arabidopsis and Aspergillus. The mammalian cotransporter may be important in eliminating the products of NO metabolism, particularly in cells that generate vast amounts of this messenger. By cotransporting NO3 − with H+ the cells would additionally eliminate acid equivalents from activated cells that are metabolizing actively, without added energetic investment and with minimal disruption of the transmembrane potential, inasmuch as the cotransporter is likely electroneutral.Keywords
This publication has 89 references indexed in Scilit:
- The Kinetics, Substrate, and Inhibitor Specificity of the Monocarboxylate (Lactate) Transporter of Rat Liver Cells Determined Using the Fluorescent Intracellular pH Indicator, 2′,7′-Bis(carboxyethyl)-5(6)-carboxyfluoresceinPublished by Elsevier ,1996
- NTR1 encodes a high affinity oligopeptide transporter in ArabidopsisFEBS Letters, 1995
- Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini)Carcinogenesis: Integrative Cancer Research, 1994
- Plasma nitric oxide levels in newborn infants with sepsisThe Journal of Pediatrics, 1993
- Sensitivity to nitrate and other oxyanions further distinguishes the vanadate-sensitive osteoclast proton pump from other vacuolar hydrogen ion-ATPasesBiochemistry, 1993
- Urinary excretion of nitrite and nitrate in experimental glomerulonephritis reflects systemic immune activation and not glomerular synthesisClinical and Experimental Immunology, 1992
- Sulfate transport in human neutrophils.The Journal of general physiology, 1989
- Formation and release of nitric oxide from human neutrophils and HL‐60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene B4FEBS Letters, 1989
- Ethacrynic Acid and Related Diuretics: Relationship of Structure to Beneficial and Detrimental ActionsAnnual Review of Pharmacology and Toxicology, 1981
- The anion transport system of the red blood cell The role of membrane protein evaluated by the use of ‘probes’Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1978