9.—Bivariational Bounds associated with Non-self-adjoint Linear Operators

Abstract
Let A be a closed linear transformation from a real Hilbert space ℋ, with symmetric inner product 〈, 〉, into itself; and let f ∈ ℋ be given such that the problem Aø = f has a solution ø ∈ D(A), the domain of A. Then bivariational upper and lower bounds on 〈g, ø〉 for any g ∈ ℋ are exhibited when there exists a positive constant a such that 〈AΦ, AΦ⊖ ≧ a2〈Φ, Φ〉 for all Φ ∈ D(A). The applicability of the theory both to Fredholm integral equations and also to time-dependent diffusion equations is demonstrated.

This publication has 4 references indexed in Scilit: